论文标题
Lorentzian均匀空间中表面的旋转表示3
Spinorial representation of surfaces in Lorentzian homogeneous spaces of dimension 3
论文作者
论文摘要
我们在洛伦兹(Lorentzian)均匀空间$ 3中找到了Riemannian或Lorentzian表面的旋转表示。然后,我们在$ \ Mathbb {r}^3 $中恢复最小表面之间的卡拉比对应关系,最大表面和$ \ Mathbb {r} _1^3 $中的最大表面,并获得$ \ \ m i} _1^3 $ and in 3-d-dimensional in 3-d-dimensional in $ \ mathbb {r} cmc表面之间的新Lawson类型对应关系。 $ \ mathbb {h} _1^{3}。$
We find a spinorial representation of a Riemannian or Lorentzian surface in a Lorentzian homogeneous space of dimension $3.$ We in particular obtain a representation theorem for surfaces in the $\mathbb{L}(κ,τ)$ spaces. We then recover the Calabi correspondence between minimal surfaces in $\mathbb{R}^3$ and maximal surfaces in $\mathbb{R}_1^3$, and obtain a new Lawson type correspondence between CMC surfaces in $\mathbb{R}_1^3$ and in the 3-dimensional pseudo-hyperbolic space $\mathbb{H}_1^{3}.$