论文标题

一个耦合的多种歧管优化框架,共同对功能连接组和行为数据空间进行建模

A Coupled Manifold Optimization Framework to Jointly Model the Functional Connectomics and Behavioral Data Spaces

论文作者

D'Souza, Niharika Shimona, Nebel, Mary Beth, Wymbs, Nicholas, Mostofsky, Stewart, Venkataraman, Archana

论文摘要

由于两个不同但相关的数据域之间的复杂相互作用,将功能连接与行为联系起来的问题极具挑战性。我们提出了一个耦合的歧管优化框架,该框架将fMRI数据投射到该队列共有的低维矩阵歧管上。患者特定的负载同时通过第二个非线性歧管映射到感兴趣的行为度量。通过利用内核技巧,我们可以在潜在的无限尺寸空间上进行优化,而无需明确计算嵌入。与假定固定输入表示形式的常规流形学习相反,我们的框架直接优化了预测行为的嵌入方向。我们的优化算法将近端下降与信任区域方法相结合,该方法具有良好的收敛保证。我们使用三种不同的临床严重程度测量方法来验证58例自闭症谱系障碍患者的静止状态fMRI框架。我们的方法在交叉验证的环境中优于传统表示技术,从而证明了我们耦合目标的预测能力。

The problem of linking functional connectomics to behavior is extremely challenging due to the complex interactions between the two distinct, but related, data domains. We propose a coupled manifold optimization framework which projects fMRI data onto a low dimensional matrix manifold common to the cohort. The patient specific loadings simultaneously map onto a behavioral measure of interest via a second, non-linear, manifold. By leveraging the kernel trick, we can optimize over a potentially infinite dimensional space without explicitly computing the embeddings. As opposed to conventional manifold learning, which assumes a fixed input representation, our framework directly optimizes for embedding directions that predict behavior. Our optimization algorithm combines proximal gradient descent with the trust region method, which has good convergence guarantees. We validate our framework on resting state fMRI from fifty-eight patients with Autism Spectrum Disorder using three distinct measures of clinical severity. Our method outperforms traditional representation learning techniques in a cross validated setting, thus demonstrating the predictive power of our coupled objective.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源