论文标题
在阿伯利亚品种上的自动形态的动力学程度
Dynamical degrees of automorphisms on abelian varieties
论文作者
论文摘要
对于任何给定的塞勒姆编号,我们在一个简单的亚伯利亚品种上构建了一个自动形态,其第一动力学是塞勒姆数的平方。我们的构造适用于完全不确定的四元组繁殖和第二种简单的阿贝尔品种的简单阿伯利亚品种。然后,我们对最多四个维度的Abelian品种的动态度序列进行了完整的分类,并获得了形式回调序列的厄贡结果。
For any given Salem number, we construct an automorphism on a simple abelian variety whose first dynamical degree is the square of the Salem number. Our construction works for both simple abelian varieties with totally indefinite quaternion multiplication and for simple abelian varieties of the second kind. We then give a complete classification of the dynamical degree sequences for abelian varieties of dimension at most four and obtain an ergodic result for sequences of pullbacks of forms.