论文标题
星系输入到组上
Infall of galaxies onto groups
论文作者
论文摘要
宇宙中结构的生长表现为星系的积聚流到组和簇上。因此,群体及其成员星系的当今特性受到这种连续的插入模式的特征的影响。在数值模拟中,在观察中进行了理论上的一些作用,研究了这一过程,并提供了有用的步骤,以更好地理解星系系统及其演变。我们旨在使用观察性奇特速度数据探索星系的流流到组上。还分析了距离不确定性的效果,以及插入模式与组和环境特性之间的关系。这项工作处理特殊速度数据的分析及其对集体中心方向的投影,以确定平均星系输入流量。我们将此分析应用于从Cosmicflows-3目录中提取的星系和组。我们还使用源自数值模拟的模拟目录来探索距离不确定性对星系速度流到组的衍生的影响。我们使用特殊的速度数据确定了带有CZ <0.033的星系基团到星系基团的无数速度场。我们在不同质量范围的组样品上测量平均插入速度,并探索该组居住的环境的影响。远远超出了组病毒半径,周围的大规模星系过度密度可能会在200至400 km s $^{ - 1} $的范围内施加其他插入流幅度。此外,我们发现,具有良好控制星系密度环境的样品中的组显示出与线性模型的预测相一致的群体质量的插入速度幅度的增加。观察数据的这些结果与从模拟目录中得出的结果非常吻合。
Growth of the structure in the Universe manifest as accretion flows of galaxies onto groups and clusters. Thus, the present day properties of groups and their member galaxies are influenced by the characteristics of this continuous infall pattern. Several works both theoretical, in numerical simulations, and in observations, study this process and provide useful steps for a better understanding of galaxy systems and their evolution. We aim at exploring the streaming flow of galaxies onto groups using observational peculiar velocity data. The effects of distance uncertainties are also analyzed as well as the relation between the infall pattern and group and environment properties.This work deals with analysis of peculiar velocity data and their projection on the direction to group centers, to determine the mean galaxy infall flow. We applied this analysis to the galaxies and groups extracted from the Cosmicflows-3 catalog. We also use mock catalogs derived from numerical simulations to explore the effects of distance uncertainties on the derivation of the galaxy velocity flow onto groups. We determine the infalling velocity field onto galaxy groups with cz < 0.033 using peculiar velocity data. We measure the mean infall velocity onto group samples of different mass range, and also explore the impact of the environment where the group reside. Well beyond the group virial radius, the surrounding large-scale galaxy overdensity may impose additional infalling streaming amplitudes in the range 200 to 400 km s$^{-1}$. Also, we find that groups in samples with a well controlled galaxy density environment show an increasing infalling velocity amplitude with group mass, consistent with the predictions of the linear model. These results from observational data are in excellent agreement with those derived from the mock catalogs.