论文标题

Cu $ _ {12} $ SB $ _4 $ S $ _ {13} $的电子传输和结构特性的第一原理研究

First-principles study of electronic transport and structural properties of Cu$_{12}$Sb$_4$S$_{13}$ in its high-temperature phase

论文作者

di Paola, Cono, Macheda, Francesco, Laricchia, Savio, Weber, Cedric, Bonini, Nicola

论文摘要

我们介绍了四面体的结构和电子传输特性,Cu $ _ {12} $ SB $ _4 $ s $ _ {13} $,在其高温阶段。我们展示了如何将这种复杂化合物视为在半导体的女性状结构(CU3SBS4)中s vac的有序排列的结果。我们的计算证实,S V胶是这种热电化合物中的自然掺杂机制,并揭示了围绕晶体不相等的Cu原子周围的局部化学环境,从而阐明了该化合物中XPS测量的辩论。为了访问电气传输特性,我们使用用于第一原理分子动力学模拟快照的库拜绿色公式。这种方法对于在如此复杂的晶体结构中有效地说明电子与晶格振动之间的相互作用至关重要,在这种复杂的晶体结构中,强烈的非谐调在稳定高温相中起着关键作用。我们的结果表明,Seebeck系数与实验非常吻合,并且声子限制的电阻率显示了温度趋势,与广泛的实验数据相比。对于Cu-SB-S系统中原始矿物来说,电阻率的预测下限非常低,但距离文献中报告的最低实验数据不远。事实证明,洛伦兹的数量大大低于Wiedemann-Franz定律中自由电子价值的预期,因此提供了一种准确的方法来估计实验中的电子和晶格贡献对这种非常低的导热性晶体材料中极为重要的电子和晶格的贡献。

We present an ab initio study of the structural and electronic transport properties of tetrahedrite, Cu$_{12}$Sb$_4$S$_{13}$, in its high-temperature phase. We show how this complex compound can be seen as the outcome of an ordered arrangement of S-vacancies in a semiconducting fematinite-like structure (Cu3SbS4). Our calculations confirm that the S-vacancies are the natural doping mechanism in this thermoelectric compound and reveal a similar local chemical environment around crystallographically inequivalent Cu atoms, shedding light on the debate on XPS measurements in this compound. To access the electrical transport properties as a function of temperature we use the Kubo-Greenwood formula applied to snapshots of first-principles molecular dynamics simulations. This approach is essential to effectively account for the interaction between electrons and lattice vibrations in such a complex crystal structure where a strong anharmonicity plays a key role in stabilising the high-temperature phase. Our results show that the Seebeck coeffcient is in good agreement with experiments and the phonon-limited electrical resistivity displays a temperature trend that compares well with a wide range of experimental data. The predicted lower bound for the resistivity turns out to be remarkably low for a pristine mineral in the Cu-Sb-S system but not too far from the lowest experimental data reported in literature. The Lorenz number turns out to be substantially lower than what expected from the free-electron value in the Wiedemann-Franz law, thus providing an accurate way to estimate the electronic and lattice contributions to the thermal conductivity in experiments, of great significance in this very low thermal conductivity crystalline material.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源