论文标题
二维范德华磁铁中的光诱导的拓扑元音
Light-induced topological magnons in two-dimensional van der Waals magnets
论文作者
论文摘要
在有效的低能旋转汉密尔顿(Hamiltonian)中,驱动具有循环极化的时间反转和反转对称性的二维Mott绝缘子,可诱导光学可调的合成标量旋转手性相互作用。在这里,我们表明这种机制可以稳定蜂窝铁磁体和光学晶格中的拓扑镁激发。我们发现,受辐照的量子磁铁是由Haldane模型描述的,该模型构成了托管受拓扑保护的边缘模式。我们研究了Floquet Segime中磁杆谱的演变,并通过对Hamiltonian的时间传播,以缓慢变化的脉冲包膜。与基于Aharanov-Casher效应的类似但概念上不同的驾驶方案相比,固定电场强度下的无量纲光耦合参数$λ= EEA/\HbarΩ$可以通过因子$ \ sim 10^5 $来增强。耦合参数的增加允许诱导$δ\ 2 $ MEV的拓扑间隙,并具有逼真的激光脉冲,从而实现了光诱导的拓扑岩石元素边缘状态。
Driving a two-dimensional Mott insulator with circularly polarized light breaks time-reversal and inversion symmetry, which induces an optically-tunable synthetic scalar spin chirality interaction in the effective low-energy spin Hamiltonian. Here, we show that this mechanism can stabilize topological magnon excitations in honeycomb ferromagnets and in optical lattices. We find that the irradiated quantum magnet is described by a Haldane model for magnons that hosts topologically-protected edge modes. We study the evolution of the magnon spectrum in the Floquet regime and via time propagation of the magnon Hamiltonian for a slowly varying pulse envelope. Compared to similar but conceptually distinct driving schemes based on the Aharanov-Casher effect, the dimensionless light-matter coupling parameter $λ= eEa/\hbarω$ at fixed electric field strength is enhanced by a factor $\sim 10^5$. This increase of the coupling parameter allows to induce a topological gap of the order of $Δ\approx 2$ meV with realistic laser pulses, bringing an experimental realization of light-induced topological magnon edge states within reach.