论文标题

与表面图关联的新类量子代码

New Classes of Quantum Codes Associated with Surface Maps

论文作者

Bhowmik, Debashis, Maity, Dipendu, Yadav, Bhanu Pratap, Upadhyay, Ashish Kumar

论文摘要

如果{face types} {at}的循环序列相同,则映射被认为是半等级地图。特别是,如果面部相同的类型,则半等级图是等效的。同源量子代码代表拓扑量子代码的子类。在本文中,我们介绍{13}新类量子代码。这些代码与以下内容相关联:(i)类型$ [k^k] $,(ii)在双曲线上的epivelar映射以及覆盖地图的覆盖,以及(iii)半等级地图,以及\ echar {-1}的表面上的半等级地图,以及{-1}的表面。 (i)中与地图相关的代码类的编码速率是如此,以至于$ \ frac {k} {n} \ rightarrow 1 $ as $ n \ rightarrow \ infty $ as of rightArrow \ infty $,对于其余的代码类,编码率为$ \ frac {k} {n} {n} {n} {n} { $。

If the cyclic sequences of {face types} {at} all vertices in a map are the same, then the map is said to be a semi-equivelar map. In particular, a semi-equivelar map is equivelar if the faces are the same type. Homological quantum codes represent a subclass of topological quantum codes. In this article, we introduce {thirteen} new classes of quantum codes. These codes are associated with the following: (i) equivelar maps of type $ [k^k]$, (ii) equivelar maps on the double torus along with the covering of the maps, and (iii) semi-equivelar maps on the surface of \Echar{-1}, along with {their} covering maps. The encoding rate of the class of codes associated with the maps in (i) is such that $ \frac{k}{n}\rightarrow 1 $ as $ n\rightarrow\infty $, and for the remaining classes of codes, the encoding rate is $ \frac{k}{n}\rightarrow α$ as $ n\rightarrow \infty $ with $ α< 1 $.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源