论文标题
天体物理学中产生的neumann-Robin边界条件的奇异非线性微分方程系统的分析解决方案
Analytic solution of system of singular nonlinear differential equations with Neumann-Robin boundary conditions arising in astrophysics
论文作者
论文摘要
在本文中,我们提出了一种新方法,用于具有Neumann-Robin边界条件的车道填充剂类型方程系统的近似分析解。该算法基于Green的功能和同义分析方法。在建立递归方案以构建格林的函数的近似分析解决方案之前,这种方法取决于构造格林的功能。与Adomian分解方法(ADM)\ Cite {Singh2020 -Solving}不同,本方法包含可调节的参数,以控制近似串联解决方案的收敛性。在相当一般的条件下提供了当前的收敛性和误差估计。考虑了几个示例来证明当前算法的准确性。计算结果表明,与某些现有的迭代方法相比,提出的方法会产生更好的结果。
In this paper, we propose a new approach for the approximate analytic solution of system of Lane-Emden-Fowler type equations with Neumann-Robin boundary conditions. The algorithm is based on Green's function and the homotopy analysis method. This approach depends on constructing Green's function before establishing the recursive scheme for the approximate analytic solution of the equivalent system of integral equations. Unlike Adomian decomposition method (ADM) \cite{singh2020solving}, the present method contains adjustable parameters to control the convergence of the approximate series solution. Convergence and error estimation of the present is provided under quite general conditions. Several examples are considered to demonstrate the accuracy of the current algorithm. Computational results reveal that the proposed approach produces better results as compared to some existing iterative methods.