论文标题

基于RLWE的同型加密的快速算术硬件库

Fast Arithmetic Hardware Library For RLWE-Based Homomorphic Encryption

论文作者

Agrawal, Rashmi, Bu, Lake, Ehret, Alan, Kinsy, Michel A.

论文摘要

在这项工作中,我们提出了一个开源的,初始的,算术硬件库,重点是加速与错误(RLWE)涉及的算术操作(RLWE),基于某种同型加密(SHE)。我们设计并实施了一个硬件加速器,该硬件加速器包括残留编号系统(RNS),中国剩余定理(CRT),基于NTT的多项式乘法,Modulo倒数,减少模量以及所有其他涉及的多项式和标量操作。对于所有这些操作,无论如何,我们在库中包括一个硬件成本有效的串行和快速的并行实现。模块化和参数化的设计方法有助于轻松自定义,并提供了扩展这些操作的灵活性,以供大多数同质加密应用程序使用,这些应用程序非常适合新兴的FPGA云体系结构。使用库中的子模型,我们在FPGA上原型一个硬件加速器。与现有软件实施相比,该硬件加速器的评估显示出大约4200x和2950x的速度,分别评估同型乘法和添加。

In this work, we propose an open-source, first-of-its-kind, arithmetic hardware library with a focus on accelerating the arithmetic operations involved in Ring Learning with Error (RLWE)-based somewhat homomorphic encryption (SHE). We design and implement a hardware accelerator consisting of submodules like Residue Number System (RNS), Chinese Remainder Theorem (CRT), NTT-based polynomial multiplication, modulo inverse, modulo reduction, and all the other polynomial and scalar operations involved in SHE. For all of these operations, wherever possible, we include a hardware-cost efficient serial and a fast parallel implementation in the library. A modular and parameterized design approach helps in easy customization and also provides flexibility to extend these operations for use in most homomorphic encryption applications that fit well into emerging FPGA-equipped cloud architectures. Using the submodules from the library, we prototype a hardware accelerator on FPGA. The evaluation of this hardware accelerator shows a speed up of approximately 4200x and 2950x to evaluate a homomorphic multiplication and addition respectively when compared to an existing software implementation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源