论文标题
通过Otelbaev的功能,具有测量电位的Sturm-Liouville操作员的光谱理论
Spectral Theory for Sturm-Liouville operators with measure potentials through Otelbaev's function
论文作者
论文摘要
我们研究了具有测量电位的Sturm-Liouville操作员的光谱特性。我们获得了特征值的光谱分布函数的双向估计。作为推论,我们得出了频谱离散性的标准,以及分解为沙顿类的成员资格的标准。我们给出了基本光谱的下限的两个侧面估计。我们实现这一目标的主要工具是Otelbaev的功能。
We investigate the spectral properties of Sturm-Liouville operators with measure potentials. We obtain two-sided estimates for the spectral distribution function of the eigenvalues. As a corollary, we derive a criterion for the discreteness of the spectrum and a criterion for the membership of the resolvents to Schatten classes. We give two side estimates for the lower bound of the essential spectrum. Our main tool in achieving this is Otelbaev's function.