论文标题
针对自适应人重新识别的多个专家头脑风暴
Multiple Expert Brainstorming for Domain Adaptive Person Re-identification
论文作者
论文摘要
通常,表现最好的深度神经模型是多个基础网络的合奏,但是,关于域自适应人员重新ID的合奏学习仍然没有探索。在本文中,我们为域自适应人重新ID提出了一个多个专家头脑风暴网络(MEB-NET),在无监督条件下为模型集成问题打开了一个有希望的方向。 MEB-NET采用了一种共同的学习策略,其中具有不同体系结构的多个网络在源域内进行了预先训练,因为配备了特定功能和知识的专家模型,而专家模型之间的头脑风暴(相互学习)则可以实现适应性。 MEB-NET通过引入有关专家权限的正规化计划来适应具有不同架构的专家的异质性,并增强了改编的Re-ID模型的歧视能力。大规模数据集(Market-1501和Dukemtmc-Reid)进行的广泛实验表明,MEB-NET的性能优于最先进的。
Often the best performing deep neural models are ensembles of multiple base-level networks, nevertheless, ensemble learning with respect to domain adaptive person re-ID remains unexplored. In this paper, we propose a multiple expert brainstorming network (MEB-Net) for domain adaptive person re-ID, opening up a promising direction about model ensemble problem under unsupervised conditions. MEB-Net adopts a mutual learning strategy, where multiple networks with different architectures are pre-trained within a source domain as expert models equipped with specific features and knowledge, while the adaptation is then accomplished through brainstorming (mutual learning) among expert models. MEB-Net accommodates the heterogeneity of experts learned with different architectures and enhances discrimination capability of the adapted re-ID model, by introducing a regularization scheme about authority of experts. Extensive experiments on large-scale datasets (Market-1501 and DukeMTMC-reID) demonstrate the superior performance of MEB-Net over the state-of-the-arts.