论文标题

同质梯度流的模式

Modes of Homogeneous Gradient Flows

论文作者

Cohen, Ido, Azencot, Omri, Lifshitz, Pavel, Gilboa, Guy

论文摘要

在数据中找到潜在的结构正在引起越来越多的注意力,例如图像和信号处理,流体动力学和机器学习。在这项工作中,我们研究了找到梯度流的主要模式的问题。梯度下降是优化的一个基本过程,其随机版本在培训神经网络中是突出的。在这里,我们的目的是为梯度流$ψ_t= p(ψ)$建立一个一致的理论,其中$ p $是一个非线性均质运算符。我们提出的框架源于Cohen-Gilboa以前正式化的均质流的分析解决方案,其中初始条件$ψ_0$允许非线性特征值问题$ p(ψ_0)=λψ_0$。在这种情况下,我们首先提出了\ ac {dmd}的分析解决方案。我们显示\ ac {dmd}的固有缺陷,该缺陷无法恢复流的基本动力学。显然,\ ac {dmd}最适合第一学位的同质流。我们提出了一种自适应时间采样方案,并表明其动力学类似于具有固定步骤尺寸的第一度流量。此外,我们使用对称矩阵调整\ ac {dmd}以产生真实频谱。我们对拟议方案的分析解决方案可以完美恢复动力学,并产生零误差。然后,我们继续证明,在一般情况下,正交模式$ \ {ϕ_i \} $是近似非线性特征functions $ p(ϕ_i)\ lotic_i ϕ_i $。我们制定正交非线性光谱分解(\ emph {orthons}),该分解恢复了梯度下降过程的必要潜在结构。给出了频谱和过滤的定义,并显示了parseval型身份。

Finding latent structures in data is drawing increasing attention in diverse fields such as image and signal processing, fluid dynamics, and machine learning. In this work we examine the problem of finding the main modes of gradient flows. Gradient descent is a fundamental process in optimization where its stochastic version is prominent in training of neural networks. Here our aim is to establish a consistent theory for gradient flows $ψ_t = P(ψ)$, where $P$ is a nonlinear homogeneous operator. Our proposed framework stems from analytic solutions of homogeneous flows, previously formalized by Cohen-Gilboa, where the initial condition $ψ_0$ admits the nonlinear eigenvalue problem $P(ψ_0)=λψ_0 $. We first present an analytic solution for \ac{DMD} in such cases. We show an inherent flaw of \ac{DMD}, which is unable to recover the essential dynamics of the flow. It is evident that \ac{DMD} is best suited for homogeneous flows of degree one. We propose an adaptive time sampling scheme and show its dynamics are analogue to homogeneous flows of degree one with a fixed step size. Moreover, we adapt \ac{DMD} to yield a real spectrum, using symmetric matrices. Our analytic solution of the proposed scheme recovers the dynamics perfectly and yields zero error. We then proceed to show that in the general case the orthogonal modes $\{ ϕ_i \}$ are approximately nonlinear eigenfunctions $P(ϕ_i) \approxλ_i ϕ_i $. We formulate Orthogonal Nonlinear Spectral decomposition (\emph{OrthoNS}), which recovers the essential latent structures of the gradient descent process. Definitions for spectrum and filtering are given, and a Parseval-type identity is shown.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源