论文标题
通过准确性监控,提高深神经网络的信任度
Increasing Trustworthiness of Deep Neural Networks via Accuracy Monitoring
论文作者
论文摘要
深神经网络(DNN)的推理准确性是一个至关重要的性能指标,但在实践中可能会差异很大,但要受实际测试数据集的影响,并且由于缺乏地面真相标签,通常是未知的。这引起了DNN的可信赖性的重大关注,尤其是在关键安全应用方面。在本文中,我们通过使用事后处理来监视用户数据集上的真实推理精度来解决DNN的可信赖性。具体而言,我们提出了一个基于神经网络的精度监视器模型,该模型仅将已部署的DNN的软态概率输出作为其输入,并直接预测DNN的预测结果是否正确,从而导致对真实推断准确性的估计。精确监视器模型可以在与目标应用程序相关的数据集上进行预训练,并且只需要在用户数据集的一个小部分(在我们的实验中1%)积极标记用于模型传输的数据集。为了估计鲁棒性,我们进一步采用了基于蒙特卡洛辍学方法的监视器模型集合。我们评估了不同部署的DNN模型的方法,用于图像分类和多个数据集(包括对抗样本)上的流量标志检测。结果表明,我们的准确性监视器模型提供了接近实际的准确性估计,并优于现有的基线方法。
Inference accuracy of deep neural networks (DNNs) is a crucial performance metric, but can vary greatly in practice subject to actual test datasets and is typically unknown due to the lack of ground truth labels. This has raised significant concerns with trustworthiness of DNNs, especially in safety-critical applications. In this paper, we address trustworthiness of DNNs by using post-hoc processing to monitor the true inference accuracy on a user's dataset. Concretely, we propose a neural network-based accuracy monitor model, which only takes the deployed DNN's softmax probability output as its input and directly predicts if the DNN's prediction result is correct or not, thus leading to an estimate of the true inference accuracy. The accuracy monitor model can be pre-trained on a dataset relevant to the target application of interest, and only needs to actively label a small portion (1% in our experiments) of the user's dataset for model transfer. For estimation robustness, we further employ an ensemble of monitor models based on the Monte-Carlo dropout method. We evaluate our approach on different deployed DNN models for image classification and traffic sign detection over multiple datasets (including adversarial samples). The result shows that our accuracy monitor model provides a close-to-true accuracy estimation and outperforms the existing baseline methods.