论文标题
可穿戴呼吸监测:可解释的推断上下文和传感器生物标志物
Wearable Respiration Monitoring: Interpretable Inference with Context and Sensor Biomarkers
论文作者
论文摘要
在许多急性健康状况(例如哮喘)中,呼吸率(BR),微小通风(VE)和其他呼吸参数对于实时患者监测至关重要。测量呼吸的临床标准,即肺活量测定法,几乎不适合连续使用。可穿戴设备可以跟踪许多生理信号,例如心电图和运动,但不能呼吸。从其他模式中获得呼吸已成为积极研究的领域。在这项工作中,我们从可穿戴的心电图和手腕运动信号中推断出呼吸参数。我们提出了一个模块化且可推广的分类 - 回归管道,以在学习上下文条件的推理模型中利用可用的上下文信息,例如身体活动。可穿戴心电图的形态和功率领域的新颖特征被提取以与这些模型一起使用。探索性特征选择方法已纳入本管道中,以发现特定于应用的可解释生物标志物。使用来自15个受试者的数据,我们评估了提出的管道的两个实现:用于推断BR和VE。每个实施都将广义线性模型,随机森林,支持向量机,高斯过程回归和邻域组件分析作为上下文回归模型进行了比较。置换,正则化和相关性确定方法用于对ECG特征进行排名,以识别模型和活动之间强大的ECG生物标志物。这项工作证明了可穿戴传感器的潜力,不仅在连续监测中,而且还在设计生物标志物驱动的预防措施时。
Breathing rate (BR), minute ventilation (VE), and other respiratory parameters are essential for real-time patient monitoring in many acute health conditions, such as asthma. The clinical standard for measuring respiration, namely Spirometry, is hardly suitable for continuous use. Wearables can track many physiological signals, like ECG and motion, yet not respiration. Deriving respiration from other modalities has become an area of active research. In this work, we infer respiratory parameters from wearable ECG and wrist motion signals. We propose a modular and generalizable classification-regression pipeline to utilize available context information, such as physical activity, in learning context-conditioned inference models. Morphological and power domain novel features from the wearable ECG are extracted to use with these models. Exploratory feature selection methods are incorporated in this pipeline to discover application-specific interpretable biomarkers. Using data from 15 subjects, we evaluate two implementations of the proposed pipeline: for inferring BR and VE. Each implementation compares generalized linear model, random forest, support vector machine, Gaussian process regression, and neighborhood component analysis as contextual regression models. Permutation, regularization, and relevance determination methods are used to rank the ECG features to identify robust ECG biomarkers across models and activities. This work demonstrates the potential of wearable sensors not only in continuous monitoring, but also in designing biomarker-driven preventive measures.