论文标题

混合深度学习体系结构,用于跨tokamaks的一般破坏预测

Hybrid deep learning architecture for general disruption prediction across tokamaks

论文作者

Zhu, J. X., Rea, C., Montes, K., Granetz, R. S., Sweeney, R., Tinguely, R. A.

论文摘要

在本文中,我们基于探索性数据分析的重要发现,提出了一种新的深度学习中断预测算法,该发现有效地允许知识从现有设备转移到新设备,从而通过新设备中的破坏性数据进行了有限的破坏性数据进行预测。通过无监督的聚类技术进行的探索性数据分析证实,时间序列数据比瞬时等离子体状态数据更好地具有破坏性和非破坏性行为的分离器,对基于序列的预测指标具有进一步的优势。基于如此重要​​的发现,我们为多机扰动预测设计了一种新算法,该算法在C-MOD(AUC = 0.801),DIII-D(AUC = 0.947)和EAST(AUC = 0.973)的Tokamaks上获得了高预测精度,具有有限的超参数调节。通过数值实验,我们表明,通过在训练中仅包括20次破坏性放电,数千起非破坏性的放电,并将其与DIIII-D和C-MOD的一千多次放电相结合,可以在东方预测中提高准确性(AUC = 0.959)。通过将来自其他设备的破坏性数据组合而获得的预测能力的提高对于三种设备的所有排列都是正确的。此外,通过比较每个单独的数值实验的预测性能,我们发现非破坏性数据是机器特异性的,而来自多个设备的破坏性数据包含与设备无关的知识,可用于为新设备上发生的破坏预测提供信息。

In this paper, we present a new deep learning disruption prediction algorithm based on important findings from explorative data analysis which effectively allows knowledge transfer from existing devices to new ones, thereby predicting disruptions using very limited disruptive data from the new devices. The explorative data analysis conducted via unsupervised clustering techniques confirms that time-sequence data are much better separators of disruptive and non-disruptive behavior than the instantaneous plasma state data with further advantageous implications for a sequence-based predictor. Based on such important findings, we have designed a new algorithm for multi-machine disruption prediction that achieves high predictive accuracy on the C-Mod (AUC=0.801), DIII-D (AUC=0.947) and EAST (AUC=0.973) tokamaks with limited hyperparameter tuning. Through numerical experiments, we show that boosted accuracy (AUC=0.959) is achieved on EAST predictions by including in the training only 20 disruptive discharges, thousands of non-disruptive discharges from EAST, and combining this with more than a thousand discharges from DIII-D and C-Mod. The improvement of predictive ability obtained by combining disruptive data from other devices is found to be true for all permutations of the three devices. Furthermore, by comparing the predictive performance of each individual numerical experiment, we find that non-disruptive data are machine-specific while disruptive data from multiple devices contain device-independent knowledge that can be used to inform predictions for disruptions occurring on a new device.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源