论文标题

从PET-MRI中在阿尔茨海默氏病中扩散的tau蛋白的生物物理模型的校准

Calibration of Biophysical Models for tau-Protein Spreading in Alzheimer's Disease from PET-MRI

论文作者

Scheufele, Klaudius, Subramanian, Shashank, Biros, George

论文摘要

错误折叠的tau蛋白的聚集体(或简洁起来)在阿尔茨海默氏病(AD)的进展中起着至关重要的作用,因为它们与细胞死亡和加速组织萎缩相关。可以使用纵向正电子发射断层扫描(PET)扫描可以量化异常TAU扩散的延伸。这种基于宠物的图像生物标志物是用于AD诊断和预后的有前途的技术。在这里,我们建议使用纵向PET扫描来校准器官规模的生物物理数学模型,以提取特征性生长模式和tau的扩散。生物物理模型是一个反应 - 添加扩散部分差分方程(PDE),只有两个标量未知参数,一个代表扩散(PDE的扩散部分),另一个代表Tau的生长(PDE的反应部分)。对流项捕获组织萎缩,并从纵向磁共振成像(MRI)扫描的差异登记中获得。我们描述了该方法,它提出了用于校准生长和扩散参数的数值方案,使用合成数据进行灵敏度研究,并且我们对ADNI数据集的临床扫描进行了初步评估。我们研究了这种模型校准是否可能是可能的,并研究了这种校准对连续扫描与存在萎缩之间时间的敏感性。我们的发现表明,尽管仅使用了两个校准参数,但该模型可以非常准确地重建临床扫描。我们发现扫描与背景噪声的存在之间的时间间隔很小。我们的重建模型非常适合数据,但有关临床数据的研究也揭示了简单模型的缺点。有趣的是,这些参数显示出患者的显着差异,这表明这些参数可能是有用的生物标志物。

Aggregates of misfolded tau proteins (or just 'tau' for brevity) play a crucial role in the progression of Alzheimer's disease (AD) as they correlate with cell death and accelerated tissue atrophy. Longitudinal positron emission tomography (PET) scans can be used quantify the extend of abnormal tau spread. Such PET-based image biomarkers are a promising technology for AD diagnosis and prognosis. Here, we propose to calibrate an organ-scale biophysical mathematical model using longitudinal PET scans to extract characteristic growth patterns and spreading of tau. The biophysical model is a reaction-advection-diffusion partial differential equation (PDE) with only two scalar unknown parameters, one representing the spreading (the diffusion part of the PDE) and the other one the growth of tau (the reaction part of the PDE). The advection term captures tissue atrophy and is obtained from diffeomorphic registration of longitudinal magnetic resonance imaging (MRI) scans. We describe the method, present a numerical scheme for the calibration of the growth and spreading parameters, perform a sensitivity study using synthetic data, and we perform a preliminary evaluation on clinical scans from the ADNI dataset. We study whether such model calibration is possible and investigate the sensitivity of such calibration to the time between consecutive scans and the presence of atrophy. Our findings show that despite using only two calibration parameters, the model can reconstruct clinical scans quite accurately. We discovered that small time intervals between scans and the presence of background noise create difficulties. Our reconstructed model fits the data well, yet the study on clinical data also reveals shortcomings of the simplistic model. Interestingly, the parameters show significant variability across patients, an indication that these parameters could be useful biomarkers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源