论文标题
在1次吸收的素数中
On 1-absorbing prime submodules
论文作者
论文摘要
在这项研究中,我们旨在介绍具有非零身份的通勤环上的1次吸收素数的素数概念。让M为R模块,而N为M的适当子模块。对于所有非单元元件A,在M中为M中的A,B中的B和M If in If in in n in n,in N in(n:m)中的ABM,或N中的m,则N称为M的1-浸润。除了1-吸收素数的某些属性外,我们还可以在乘法模块中获得其表征。
In this study, we aim to introduce the concept of a 1-absorbing prime submodule of an unital module over a commutative ring with a non-zero identity. Let M be an R-module and N be a proper submodule of M. For all non-unit elements a, b in R and m in M if abm in N, either ab in (N : M) or m in N, then N is called 1-absorbing prime submodule of M. We show that the new concept is a generalization of prime submodules at the same time it is a kind of special 2-absorbing submodule. In addition to some properties of a 1-absorbing prime submodule, we obtain a characterization of it in a multiplication module.