论文标题

熵稳定的不连续的Galerkin方法,用于十臂高斯闭合方程

Entropy stable discontinuous Galerkin methods for ten-moment Gaussian closure equations

论文作者

Biswas, Biswarup, Kumar, Harish, Yadav, Anshu

论文摘要

在本文中,我们提出了高阶不连续的Galerkin熵稳定方案,以实现十分矩高斯闭合方程,该方程基于合适的正交规则(请参阅[8])。该方法的关键组成部分是在每个单元格中使用熵保守的数值通量[31],在单元格边缘使用合适的熵稳定数值通量。然后,将其用于[8]的熵稳定DG框架,以获得半分化方案的熵稳定性。我们还将这些方案扩展到模拟等离子激光相互作用的源项。在离散的时间内,我们使用强大的稳定性保留方案。然后,在几个测试用例上测试了所提出的方案,以证明稳定性和鲁棒性。

In this article, we propose high order discontinuous Galerkin entropy stable schemes for ten-moment Gaussian closure equations, which is based on the suitable quadrature rules (see [8]). The key components of the proposed method are the use of an entropy conservative numerical flux [31] in each cell and a suitable entropy stable numerical flux at the cell edges. This is then used in the entropy stable DG framework of [8] to obtain entropy stability of the semi-discrete scheme. We also extend these schemes to a source term that models plasma laser interaction. For the time discretization, we use strong stability preserving schemes. The proposed schemes are then tested on several test cases to demonstrate stability, accuracy, and robustness.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源