论文标题

季节性流行病在小世界网络上传播:双年展的爆发和经典的离散时间晶体

Seasonal epidemic spreading on small-world networks: Biennial outbreaks and classical discrete time crystals

论文作者

Malz, Daniel, Pizzi, Andrea, Nunnenkamp, Andreas, Knolle, Johannes

论文摘要

我们研究了小世界图上的易感感染感染感染敏感(SIRS)模型中的季节性流行病扩散。我们得出了一个平均场描述,该描述准确地捕获了模型的显着特征,最著名的是年度和两年一次爆发之间的相变。数值缩放分析在热力学极限中表现出不同的自相关时间,这证实了经典离散时间晶体的存在。我们从平均场理论和数字中得出模型的相图。我们的作品通过证明小世界和非马克维亚性可以稳定经典的离散时间晶体,并将最近的努力与将物质的这种动态阶段与百年历史的两年期流行病联系起来,从而提供了新的观点。

We study seasonal epidemic spreading in a susceptible-infected-removed-susceptible (SIRS) model on smallworld graphs. We derive a mean-field description that accurately captures the salient features of the model, most notably a phase transition between annual and biennial outbreaks. A numerical scaling analysis exhibits a diverging autocorrelation time in the thermodynamic limit, which confirms the presence of a classical discrete time crystalline phase. We derive the phase diagram of the model both from mean-field theory and from numerics. Our work offers new perspectives by demonstrating that small-worldness and non-Markovianity can stabilize a classical discrete time crystal, and by linking recent efforts to understand such dynamical phases of matter to the century-old problem of biennial epidemics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源