论文标题

非确认互动:一种自一致的宣言

Non-renormalizable Interactions: A Self-Consistency Manifesto

论文作者

Kazakov, D. I.

论文摘要

事实证明,重归其化程序是一种在可重新分配的现场理论中获得有限答案的严格方法。但是,我们声称,如果仅将有限性的要求减少到S-Matrix元素,并且不需要中间数量(例如脱机绿色功能)的有限性,那么它是多余的。我们建议对重新归一化程序的新看法。它基于通常的BPHZ R型,它同样适用于任何可重新汇总的局部QFT。关键点是通过在重量化常数取决于必须集成在子图内的磁场和动量时的操作来替换乘法重新归一化,该乘法性重量化。这种方法不能区分可恢复和不可分割的相互作用,并为在两种情况下都获得有限散射幅度提供了基础。通过将归一化条件施加到整个散射幅度,而不是在不可降低理论中出现的无限系列的新算子上,通过将归一化条件施加到散射幅度来固定。 利用反对局部的属性,我们在任何局部理论中所有PT的uv差异都在连接领导,转标等方面的复发关系。这允许一个人获得具有多数差异形式并总结领先对数的广义RG方程。这样,可以通过总结主要的渐近学来解决违反不可降低理论中违反单位性的问题。我们通过几个示例来说明我们方法的基本特征。 我们的主要陈述是,不可降低的理论是自一致的,可以在通常的BPHZ r误差中得到很好的对待,并且随着可靠的情况,任意性可以固定在有限数量的参数上。

The renormalization procedure is proved to be a rigorous way to get finite answers in a renormalizable class of field theories. We claim, however, that it is redundant if one reduces the requirement of finiteness to S-matrix elements only and does not require finiteness of intermediate quantities like the off-shell Green functions. We suggest a novel view on the renormalization procedure. It is based on the usual BPHZ R-operation, which is equally applicable to any local QFT, renormalizable or not. The key point is the replacement of the multiplicative renormalization, used in renormalizable theories, by an operation when the renormalization constants depend on the fields and momenta that have to be integrated inside the subgraphs. This approach does not distinguish between renormalizable and non-renormalizable interactions and provides the basis for getting finite scattering amplitudes in both cases. The arbitrariness of the subtraction procedure is fixed by imposing a normalization condition on the scattering amplitude as a whole rather than on an infinite series of new operators appearing in non-renormalizable theories. Using the property of locality of counter-terms, we get recurrence relations connecting leading, subleading, etc., UV divergences in all orders of PT in any local theory. This allows one to get generalized RG equations that have an integro-differential form and sum up the leading logarithms. This way one can cure the problem of violation of unitarity in non-renormalizable theories by summing up the leading asymptotics. We illustrate the basic features of our approach by several examples. Our main statement is that non-renormalizable theories are self-consistent, they can be well treated within the usual BPHZ R-operation, and the arbitrariness can be fixed to a finite number of parameters just as in the renormalizable case.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源