论文标题

深度神经网络,用于降低非稳定流量的非线性模型订单

Deep Neural Networks for Nonlinear Model Order Reduction of Unsteady Flows

论文作者

Eivazi, Hamidreza, Veisi, Hadi, Naderi, Mohammad Hossein, Esfahanian, Vahid

论文摘要

不稳定的流体系统是非线性高维动力学系统,可能在时间和空间上表现出多种复杂现象。在最近的十年中,流体流的订单建模(ROM)一直是一个积极的研究主题,其主要目标是将复杂流动到一组对于未来的状态预测和控制最重要的功能,通常是使用降低性降低技术。在这项工作中,引入了一种基于深神经网络的功能来减少非稳态流体流量的订单建模的新型技术。自动编码器网络用于非线性尺寸降低和特征提取,作为单数值分解(SVD)的替代方案。然后,提取的功能用作长短期内存网络(LSTM)的输入,以预测将来的时间实例的速度字段。将提出的自动编码器-LSTM方法与基于动态模式分解(DMD)和正确正交分解(POD)的非侵入性还原订单模型进行了比较。此外,引入了自动编码器-DMD算法以减少订单建模,该订单建模使用自动编码器网络来降低维度降低而不是SVD平行截断。结果表明,自动编码器-LSTM方法非常能够预测流体流动的演变,其中确定系数$ r^{2} $的较高值是使用自动编码器LSTM与其他模型相比获得的。

Unsteady fluid systems are nonlinear high-dimensional dynamical systems that may exhibit multiple complex phenomena both in time and space. Reduced Order Modeling (ROM) of fluid flows has been an active research topic in the recent decade with the primary goal to decompose complex flows to a set of features most important for future state prediction and control, typically using a dimensionality reduction technique. In this work, a novel data-driven technique based on the power of deep neural networks for reduced order modeling of the unsteady fluid flows is introduced. An autoencoder network is used for nonlinear dimension reduction and feature extraction as an alternative for singular value decomposition (SVD). Then, the extracted features are used as an input for long short-term memory network (LSTM) to predict the velocity field at future time instances. The proposed autoencoder-LSTM method is compared with non-intrusive reduced order models based on dynamic mode decomposition (DMD) and proper orthogonal decomposition (POD). Moreover, an autoencoder-DMD algorithm is introduced for reduced order modeling, which uses the autoencoder network for dimensionality reduction rather than SVD rank truncation. Results show that the autoencoder-LSTM method is considerably capable of predicting fluid flow evolution, where higher values for coefficient of determination $R^{2}$ are obtained using autoencoder-LSTM compared to other models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源