论文标题

缓存矩阵乘法检索

Cache-Aided Matrix Multiplication Retrieval

论文作者

Wan, Kai, Sun, Hua, Ji, Mingyue, Tuninetti, Daniela, Caire, Giuseppe

论文摘要

编码的缓存是一种有前途的技术,可以通过在用户的本地缓存中存储部分库内容来平滑网络流量。 Maddah-Ali和Niesen(MAN)对单个文件检索的编码缓存的开创性工作表明,除了未编码系统中已知的局部缓存增益外,还存在系统中总内存的全局缓存增益。本文制定了一种新型的缓存矩阵乘法检索问题,与数据分析和机器学习应用有关。在考虑的问题中,每个高速缓存用户都要求库中两个矩阵的乘积。结构不足的解决方案是将每个可能的矩阵产品视为一个独立文件,并将编码的缓存方案用于单个文件检索。本文提出了两个结构意识的方案,这些方案通过行或列将每个矩阵划分为每个矩阵,并让一子用户缓存一些子序列,以改善结构 - 敏锐的方案。对于库矩阵是“脂肪”矩阵的情况,在某些约束下,结构感知的行分区方案被证明是最佳的秩序。

Coded caching is a promising technique to smooth out network traffic by storing part of the library content at the users' local caches. The seminal work on coded caching for single file retrieval by Maddah-Ali and Niesen (MAN) showed the existence of a global caching gain that scales with the total memory in the system, in addition to the known local caching gain in uncoded systems. This paper formulates a novel cache-aided matrix multiplication retrieval problem, relevant for data analytics and machine learning applications. In the considered problem, each cache-aided user requests the product of two matrices from the library. A structure-agnostic solution is to treat each possible matrix product as an independent file and use the MAN coded caching scheme for single file retrieval. This paper proposes two structure-aware schemes, which partition each matrix in the library by either rows or columns and let a subset of users cache some sub-matrices, that improve on the structure-agnostic scheme. For the case where the library matrices are "fat" matrices, the structure-aware row-partition scheme is shown to be order optimal under some constraint.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源