论文标题
在高温下,荷斯坦模型中没有扩散和分形几何形状
Absence of diffusion and fractal geometry in the Holstein model at high temperature
论文作者
论文摘要
我们在高温下研究了与荷斯坦模型中无分散光学声子结合的电子的动力学。传统上认为该动力学是扩散的,因为电子被光子声子反复散射。然而,在半古典近似中,运动不是扩散的。在一个维度上,电子沿恒定方向移动,不会转动。在二维中,电子跟随然后继续追溯分形轨迹。这些非标准动力学的各个方面保留在更准确的计算中,包括电子和声子动力学的完全量子计算。
We investigate the dynamics of an electron coupled to dispersionless optical phonons in the Holstein model, at high temperatures. The dynamics is conventionally believed to be diffusive, as the electron is repeatedly scattered by optical phonons. In a semiclassical approximation, however, the motion is not diffusive. In one dimension, the electron moves in a constant direction and does not turn around. In two dimensions, the electron follows and then continues to retrace a fractal trajectory. Aspects of these nonstandard dynamics are retained in more accurate calculations, including a fully quantum calculation of the electron and phonon dynamics.