论文标题
混合条纹文本文档的自我监督的深层重建
Self-supervised Deep Reconstruction of Mixed Strip-shredded Text Documents
论文作者
论文摘要
切碎文档的重建包括一致布置纸张(切碎)以恢复原始文档的片段。计算重建的巨大挑战是正确评估碎片之间的兼容性。尽管传统的基于像素的方法对真正的切碎并不强大,但更复杂的解决方案会大大损害时间的性能。这项工作中提出的解决方案将我们以前的深度学习方法扩展到了更现实/复杂的方案:一次重建了几个混合切碎的文档。在我们的方法中,兼容性评估被建模为两类(有效或无效)模式识别问题。该模型以从模拟修剪文档中提取的样本进行自我监督的方式进行训练,从而避免了手动注释。在三个数据集上的实验结果 - 包括为这项工作生产的100个带状纸条文档的新集合 - 表明,所提出的方法在复杂方案上优于竞争的方法,其准确度优于90%。
The reconstruction of shredded documents consists of coherently arranging fragments of paper (shreds) to recover the original document(s). A great challenge in computational reconstruction is to properly evaluate the compatibility between the shreds. While traditional pixel-based approaches are not robust to real shredding, more sophisticated solutions compromise significantly time performance. The solution presented in this work extends our previous deep learning method for single-page reconstruction to a more realistic/complex scenario: the reconstruction of several mixed shredded documents at once. In our approach, the compatibility evaluation is modeled as a two-class (valid or invalid) pattern recognition problem. The model is trained in a self-supervised manner on samples extracted from simulated-shredded documents, which obviates manual annotation. Experimental results on three datasets -- including a new collection of 100 strip-shredded documents produced for this work -- have shown that the proposed method outperforms the competing ones on complex scenarios, achieving accuracy superior to 90%.