论文标题

几乎可以确保$ \ mathbb {r}^3 $的单位球上的能量超临界NLS的全球能量良好性

Almost sure global well-posedness for the energy supercritical NLS on the unit ball of $\mathbb{R}^3$

论文作者

Sy, Mouhamadou, Yu, Xueying

论文摘要

在本文中,我们使用两种不同的方法在$ \ bbb r^3 $的单位球上提供了两个几乎确定的全球适合度(GWP)结果,以使用两种不同的方法。首先,对于具有亚临界初始数据的代数非线性的NLS,我们显示了几乎确定的全球良好性和基本措施的不变性,并建立了解决方案Sobolev规范增长的控制。该全球结果基于确定性的本地理论和概率全球化。其次,对于具有关键和超临界初始条件的通用功率非线性的NLS,我们证明了几乎确定的全球辅助性,以及在解决方案流下的度量的不变性。该全局结果建立在紧凑的论点和Skorokhod代表定理的基础上。

In this paper, we present two almost sure global well-posedness (GWP) results for the energy supercritical nonlinear Schrödinger equations (NLS) on the unit ball of $\Bbb R^3$ using two different approaches. First, for the NLS with algebraic nonlinearities with the subcritical initial data, we show the almost sure global well-posedness and the invariance of the underlying measures, and establish controls on the growth of Sobolev norms of the solutions. This global result is based on a deterministic local theory and a probabilistic globalization. Second, for the NLS with generic power nonlinearities with critical and supercritical initial conditions, we prove the almost sure global well-posedness, and the invariance of the measure under the solution flows. This global result is built on a compactness argument and the Skorokhod representation theorem.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源