论文标题

切成薄片的迭代归一化流

Sliced Iterative Normalizing Flows

论文作者

Dai, Biwei, Seljak, Uros

论文摘要

我们开发了一种迭代(贪婪)深度学习(DL)算法,该算法能够将任意概率分布函数(PDF)转换为目标PDF。该模型基于一系列1D切片的迭代最佳运输,每个切片的边缘PDF与目标匹配。选择正交切片的轴以使用每次迭代处的Wasserstein距离最大化PDF差异,从而使算法能够很好地扩展到高尺寸。作为该算法的特殊情况,我们介绍了两个切成薄片的迭代归一化流(SINF)模型,它们从数据映射到潜在空间(GIS),反之亦然(SIG)。我们表明,SIG能够生成与GAN基准相匹配的图像数据集的高质量样本,而与密度训练的NFS相比,GIS在密度估计任务上获得了竞争性结果,并且在小型训练集中训练时,更稳定,更快,更快地实现$ P(X)$。 SINF方法显着偏离当前DL范式,因为它是贪婪的,并且不使用诸如小型批次,随机梯度下降和通过深层梯度的后启动等概念。

We develop an iterative (greedy) deep learning (DL) algorithm which is able to transform an arbitrary probability distribution function (PDF) into the target PDF. The model is based on iterative Optimal Transport of a series of 1D slices, matching on each slice the marginal PDF to the target. The axes of the orthogonal slices are chosen to maximize the PDF difference using Wasserstein distance at each iteration, which enables the algorithm to scale well to high dimensions. As special cases of this algorithm, we introduce two sliced iterative Normalizing Flow (SINF) models, which map from the data to the latent space (GIS) and vice versa (SIG). We show that SIG is able to generate high quality samples of image datasets, which match the GAN benchmarks, while GIS obtains competitive results on density estimation tasks compared to the density trained NFs, and is more stable, faster, and achieves higher $p(x)$ when trained on small training sets. SINF approach deviates significantly from the current DL paradigm, as it is greedy and does not use concepts such as mini-batching, stochastic gradient descent and gradient back-propagation through deep layers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源