论文标题

补偿紧凑性:最佳弱拓扑的连续性

Compensated compactness: continuity in optimal weak topologies

论文作者

Guerra, André, Raiţă, Bogdan, Schrecker, Matthew R. I.

论文摘要

对于$ l $ - 均匀的线性差分运算符$ \ MATHCAL {a} $的恒定等级,我们研究含义$ v_j \ rightharpoonup v $ in $ x $中的$ x $和$ \ nathcal {a} a} v_j \ rightArrow \ rightArrow \ rightArrow \ rightArrow \ rightArrow \ rightarc {a} a} v $ f(v)$ in $ z $,其中$ f $是$ \ mathcal {a} $ - quasiaffine函数和$ \ rightsquigarrow $表示适当类型的弱收敛类型。这里$ z $是本地$ l^1 $ -type空间,要么是$ \ mathscr {m} $的测量值,要么$ l^1 $,或者hardy space $ \ mathscr {h}^1 $; $ x,\,y $是$ l^p $ -type空间,我们的意思是Lebesgue或Zygmund空间。我们选择$ x,\,y,\,z $的每种选择的条件很清晰。在$ f(v)$不是本地集成函数的情况下,也给出了类似的语句,而是将其定义为分布。在这种情况下,我们还证明了$ \ mathscr {h}^p $ - 序列$(f(v_j))_ j $,适用于适当的$ p <1 $,而新的融合会导致$(v_j)$ is $(v_j)$ is $ \ nathcal {a} $ - a} $ - a} $ - free and Order和fiep and Order of prop of houlder { $ w^{ - β,s} $。这些hölder空间的选择很清晰,正如明确的反例的构建所示。这些结果中的一些是新的,即使是分销雅各布人。

For $l$-homogeneous linear differential operators $\mathcal{A}$ of constant rank, we study the implication $v_j\rightharpoonup v$ in $X$ and $\mathcal{A} v_j\rightarrow \mathcal{A} v$ in $W^{-l}Y$ implies $F(v_j)\rightsquigarrow F(v)$ in $Z$, where $F$ is an $\mathcal{A}$-quasiaffine function and $\rightsquigarrow$ denotes an appropriate type of weak convergence. Here $Z$ is a local $L^1$-type space, either the space $\mathscr{M}$ of measures, or $L^1$, or the Hardy space $\mathscr{H}^1$; $X,\, Y$ are $L^p$-type spaces, by which we mean Lebesgue or Zygmund spaces. Our conditions for each choice of $X,\,Y,\,Z$ are sharp. Analogous statements are also given in the case when $F(v)$ is not a locally integrable function and it is instead defined as a distribution. In this case, we also prove $\mathscr{H}^p$-bounds for the sequence $(F(v_j))_j$, for appropriate $p<1$, and new convergence results in the dual of Hölder spaces when $(v_j)$ is $\mathcal{A}$-free and lies in a suitable negative order Sobolev space $W^{-β,s}$. The choice of these Hölder spaces is sharp, as is shown by the construction of explicit counterexamples. Some of these results are new even for distributional Jacobians.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源