论文标题
分布式模型预测性控制具有可重构终端成分用于参考跟踪的
Distributed Model Predictive Control with Reconfigurable Terminal Ingredients for Reference Tracking
论文作者
论文摘要
各种努力致力于开发稳定分布式模型预测控制(MPC)方案,以跟踪分段常数参考。在这些方案中,终端集通常是离线计算的,并在MPC在线阶段使用,以确保递归可行性和渐近稳定性。最大不变终端集并不一定尊重网络的分布式结构,阻碍了控制器的分布式实现。另一方面,椭圆形末端集尊重分布式结构,但可能导致保守的方案。在本文中,提出了一种新颖的分布式MPC方案,以参考网络动力学系统的参考跟踪,该系统根据闭环状态在线重新配置终端成分,以减轻上述问题。由二次程序近似产生的非凸照无限问题。在模拟中测试了提出的方案,其中使用分布式优化解决了所提出的MPC问题。
Various efforts have been devoted to developing stabilizing distributed Model Predictive Control (MPC) schemes for tracking piecewise constant references. In these schemes, terminal sets are usually computed offline and used in the MPC online phase to guarantee recursive feasibility and asymptotic stability. Maximal invariant terminal sets do not necessarily respect the distributed structure of the network, hindering the distributed implementation of the controller. On the other hand, ellipsoidal terminal sets respect the distributed structure, but may lead to conservative schemes. In this paper, a novel distributed MPC scheme is proposed for reference tracking of networked dynamical systems where the terminal ingredients are reconfigured online depending on the closed-loop states to alleviate the aforementioned issues. The resulting non-convex infinite-dimensional problem is approximated using a quadratic program. The proposed scheme is tested in simulation where the proposed MPC problem is solved using distributed optimization.