论文标题
使用高维神经网络电势缩小理论与实验之间的差距
Closing the gap between theory and experiment for lithium manganese oxide spinels using a high-dimensional neural network potential
论文作者
论文摘要
锂离子电池中的许多阳性电极材料都包括过渡金属,由于存在多种氧化态,因此很难通过电子结构方法(例如密度功能理论(DFT))来描述这些材料。一个突出的例子是锂锰氧化物尖晶石李$ _x $ mn $ _2 $ o $ _4 $,$ 0 \ leq x \ leq2 $。在使用本地混合功能PBE0R的DFT提供了可靠的描述时,对大型结构模型的扩展计算机模拟的需求仍然是一个重大挑战。在这里,我们通过构建基于DFT的高维神经网络电位(HDNNP)来缩小这一差距,从而以计算成本的一小部分提供准确的能量和力。由于不同的氧化态和所得的Jahn-Teller畸变代表了HDNNP的新复杂度,因此通过执行X射线衍射实验来仔细验证电势。我们证明了HDNNP提供了原子水平的详细信息,并能够预测一系列诸如晶格参数和li含量或温度,正骨到立方过渡,锂扩散屏障,锂扩散屏障和语音子频率的一系列属性。我们表明,为了理解这些属性访问HDNNP启用的大时间和长度尺度,对于缩小理论和实验之间的差距至关重要。
Many positive electrode materials in lithium ion batteries include transition metals which are difficult to describe by electronic structure methods like density functional theory (DFT) due to the presence of multiple oxidation states. A prominent example is the lithium manganese oxide spinel Li$_x$Mn$_2$O$_4$ with $0\leq x\leq2$. While DFT, employing the local hybrid functional PBE0r, provides a reliable description, the need for extended computer simulations of large structural models remains a significant challenge. Here, we close this gap by constructing a DFT-based high-dimensional neural network potential (HDNNP) providing accurate energies and forces at a fraction of the computational costs. As different oxidation states and the resulting Jahn-Teller distortions represent a new level of complexity for HDNNPs, the potential is carefully validated by performing X-ray diffraction experiments. We demonstrate that the HDNNP provides atomic level details and is able to predict a series of properties like the lattice parameters and expansion with increasing Li content or temperature, the orthorhombic to cubic transition, the lithium diffusion barrier, and the phonon frequencies. We show that for understanding these properties access to large time and length scales as enabled by the HDNNP is essential to close the gap between theory and experiment.