论文标题
在设计带有用于网状细化的应用GPU算法时
On Designing GPU Algorithms with Applications to Mesh Refinement
论文作者
论文摘要
我们提供了一组指导GPU算法设计的规则。这些规则基于减少GPU公用事业中浪费以提高速度的原则。根据这些规则,我们建议分别针对2D约束,3D约束和3D限制的Delaunay改进问题的GPU算法。我们的算法将2D平面直线图(PSLG)或3D分段线性复合物(PLC)$ \ MATHCAL {g} $作为输入,并生成质量网格符合或近似为$ \ \ \ nathcal {g} $。我们的算法的实现表明,它们是第一个以顺序和并行方式运行的数量级的速度,同时使用类似数量的Steiner点来产生可比质量的三角剖分。因此,它将网格细化的计算时间从可能的小时减少到几秒钟或几分钟,以便在交互式图形应用程序中使用。
We present a set of rules to guide the design of GPU algorithms. These rules are grounded on the principle of reducing waste in GPU utility to achieve good speed up. In accordance to these rules, we propose GPU algorithms for 2D constrained, 3D constrained and 3D Restricted Delaunay refinement problems respectively. Our algorithms take a 2D planar straight line graph (PSLG) or 3D piecewise linear complex (PLC) $\mathcal{G}$ as input, and generate quality meshes conforming or approximating to $\mathcal{G}$. The implementation of our algorithms shows that they are the first to run an order of magnitude faster than current state-of-the-art counterparts in sequential and parallel manners while using similar numbers of Steiner points to produce triangulations of comparable qualities. It thus reduces the computing time of mesh refinement from possibly hours to a few seconds or minutes for possible use in interactive graphics applications.