论文标题

带有关键字估计的基于变压器的音频字幕模型

A Transformer-based Audio Captioning Model with Keyword Estimation

论文作者

Koizumi, Yuma, Masumura, Ryo, Nishida, Kyosuke, Yasuda, Masahiro, Saito, Shoichiro

论文摘要

自动音频字幕(AAC)的问题之一是与音频事件/场景相对应的单词选择中的不确定性。由于可以用几个单词来描述一个声学事件/场景,因此会导致可能的标题和训练难度的组合爆炸。为了解决这个问题,我们提出了一个基于变压器的音频捕获模型,其中称为tracke。它同时解决了AAC的主要任务,同时解决了AAC的主要任务,同时执行声学事件检测/声学场景分类的子任务(即关键字估计)。 Tracke估计关键字,其中包含一个与输入音频中音频事件/场景相对应的单词集,并在参考估计的关键字时生成字幕,以减少单词序列性不确定。公共AAC数据集的实验结果表明,Tracke取得了最新的性能,并成功估计了标题及其关键词。

One of the problems with automated audio captioning (AAC) is the indeterminacy in word selection corresponding to the audio event/scene. Since one acoustic event/scene can be described with several words, it results in a combinatorial explosion of possible captions and difficulty in training. To solve this problem, we propose a Transformer-based audio-captioning model with keyword estimation called TRACKE. It simultaneously solves the word-selection indeterminacy problem with the main task of AAC while executing the sub-task of acoustic event detection/acoustic scene classification (i.e., keyword estimation). TRACKE estimates keywords, which comprise a word set corresponding to audio events/scenes in the input audio, and generates the caption while referring to the estimated keywords to reduce word-selection indeterminacy. Experimental results on a public AAC dataset indicate that TRACKE achieved state-of-the-art performance and successfully estimated both the caption and its keywords.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源