论文标题

从张量ra transform构建散装几何形状

Building Bulk Geometry from the Tensor Radon Transform

论文作者

Cao, ChunJun, Qi, Xiao-Liang, Swingle, Brian, Tang, Eugene

论文摘要

使用张量ra radon变换和相关的数值方法,我们研究了如何在$ \ mathrm {ads} _3/\ mathrm {cft} _2 $的特定情况下,如何从边界纠缠熵中明确重建块状几何形状。我们发现,鉴于$ 2 $ d CFT的边界纠缠熵,该框架提供了一种定量度量,可以检测散装双重二元在扰动(接近ADS)限制中。在存在明确定义的散装几何形状的情况下,一旦做出量规选择,我们就会明确重建独特的体积度量张量。然后,我们检查了全息图和多体系统中静态和动力学情景的新兴散装几何形状。除了物理学的结果外,我们的工作表明,数值方法在ADS/CFT中的批量重建方面是可行且有效的。

Using the tensor Radon transform and related numerical methods, we study how bulk geometries can be explicitly reconstructed from boundary entanglement entropies in the specific case of $\mathrm{AdS}_3/\mathrm{CFT}_2$. We find that, given the boundary entanglement entropies of a $2$d CFT, this framework provides a quantitative measure that detects whether the bulk dual is geometric in the perturbative (near AdS) limit. In the case where a well-defined bulk geometry exists, we explicitly reconstruct the unique bulk metric tensor once a gauge choice is made. We then examine the emergent bulk geometries for static and dynamical scenarios in holography and in many-body systems. Apart from the physics results, our work demonstrates that numerical methods are feasible and effective in the study of bulk reconstruction in AdS/CFT.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源