论文标题

雷曼确定性整数分解方法的时间空间权衡

A time-space tradeoff for Lehman's deterministic integer factorization method

论文作者

Hittmeir, Markus

论文摘要

Fermat众所周知的分解算法是基于找到自然数$ n $作为正方形的表示形式。 1895年,劳伦斯(Lawrence)概括了这个想法,并将其应用于原始数字的$ kn $。雷曼(Lehman)在1974年引入了一种系统的选择,以选择合适的$ k $值,这导致第一种确定性分解算法要比试验部要快得多。在本文中,我们为劳伦斯的概括构建了一个时空权衡,并将其与雷曼的结果一起应用,以获得具有运行时复杂性$ o(n^{2/9+o(1)})$的确定性整数分解算法。这是自1977年建立$ o(n^{1/4+o(1)})以来的第一个指数改进。

Fermat's well-known factorization algorithm is based on finding a representation of natural numbers $N$ as the difference of squares. In 1895, Lawrence generalized this idea and applied it to multiples $kN$ of the original number. A systematic approach to choose suitable values for $k$ was introduced by Lehman in 1974, which resulted in the first deterministic factorization algorithm considerably faster than trial division. In this paper, we construct a time-space tradeoff for Lawrence's generalization and apply it together with Lehman's result to obtain a deterministic integer factorization algorithm with runtime complexity $O(N^{2/9+o(1)})$. This is the first exponential improvement since the establishment of the $O(N^{1/4+o(1)})$ bound in 1977.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源