论文标题

低金属性原质磁盘的积聚爆发

Accretion bursts in low-metallicity protostellar disks

论文作者

Vorobyov, E. I., Elbakyan, V. G., Omukai, K., Hosokawa, T., Matsukoba, R., Guedel, M.

论文摘要

研究了$ z = 1.0-0.01〜 z_ \ odot $范围的原质磁盘的早期演变,并特别强调了引力不稳定性的强度和低金属性系统中Protostellar增生的性质。采用了薄盘极限中的数值流体动力学模拟,具有单独的气体和灰尘温度,并从插入的父母云核中载有盘质量。具有相似初始质量和旋转模式的云芯模型,但被认为具有明显的金属性,以区分金属性和初始条件的影响。低金属模型中磁盘进化的早期阶段的特征是重力不稳定和破碎。磁盘不稳定性是通过从崩溃的核心中持续的质量加载来维持的。这个不稳定阶段所涵盖的时间段在$ z = 0.01〜 z_ \ odot $模型中,由于其较高的金属性相比,由于其内部气温较高(从较低的灰尘温度下脱酸)在崩溃核心的内部零件中较高的质量输入率(降低灰尘温度)引起的质量较高。在低金属模型中,原始的增生率是高度变化的,反映了相应的原始磁盘的高度动力学性质。低金属系统的质量吸收量很短但充满活力的发作是由向内迁移的气态团块插入的,这些气态团块通过Protostellar磁盘的重力碎片化而形成。与$ z = 0.01〜 z_ \ odot $ case相比,这些爆发似乎越多,并且在$ z = 0.1〜z_ \ odot $模型中持续更长的时间。带有情节爆发的可变原恒星积聚不是太阳金属磁盘的特定特征。它也是重力不稳定磁盘的固有,其金属度比太阳能低100倍。

The early evolution of protostellar disks with metallicities in the $Z=1.0-0.01~Z_\odot$ range was studied with a particular emphasis on the strength of gravitational instability and the nature of protostellar accretion in low-metallicity systems. Numerical hydrodynamics simulations in the thin-disk limit were employed that feature separate gas and dust temperatures, and disk mass-loading from the infalling parental cloud cores. Models with cloud cores of similar initial mass and rotation pattern, but distinct metallicity were considered to distinguish the effect of metallicity from that of initial conditions. The early stages of disk evolution in low-metallicity models are characterized by vigorous gravitational instability and fragmentation. Disk instability is sustained by continual mass-loading from the collapsing core. The time period that is covered by this unstable stage is much shorter in the $Z=0.01~Z_\odot$ models as compared to their higher metallicity counterparts thanks to the higher mass infall rates caused by higher gas temperatures (that decouple from lower dust temperatures) in the inner parts of collapsing cores. Protostellar accretion rates are highly variable in the low-metallicity models reflecting a highly dynamical nature of the corresponding protostellar disks. The low-metallicity systems feature short, but energetic episodes of mass accretion caused by infall of inward-migrating gaseous clumps that form via gravitational fragmentation of protostellar disks. These bursts seem to be more numerous and last longer in the $Z=0.1~Z_\odot$ models in comparison to the $Z=0.01~Z_\odot$ case. Variable protostellar accretion with episodic bursts is not a particular feature of solar metallicity disks. It is also inherent to gravitationally unstable disks with metallicities up to 100 times lower than solar.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源