论文标题

使用节点嵌入和机器学习近似网络中心度度量

Approximating Network Centrality Measures Using Node Embedding and Machine Learning

论文作者

Mendonça, Matheus R. F., Barreto, André M. S., Ziviani, Artur

论文摘要

从现实世界中提取信息是当今的关键挑战。例如,根据其计算成本,计算节点中心性可能会变得不可行。一种解决方案是开发能够近似网络中心的快速方法。在这里,我们提出了一种使用神经网络和图形嵌入技术有效近似节点中心的方法。我们提出的模型使用图形嵌入(NCA-GE)的标题为“网络中心性近似”,使用图形的邻接矩阵和每个节点的一组特征(此处,我们仅使用该度数)作为输入并计算每个节点的近似所需的中心级。 NCA-GE的时间复杂性为$ O(| e |)$,$ e $是图形的边缘,使其适用于大型网络。 NCA-GE还非常快地训练,只需一组一套小型合成规模的图(每个节点从100到1000个节点),并且对不同节点核心,网络大小和拓扑的效果很好。最后,我们将我们的方法与最先进的方法进行了比较,该方法使用该学位和特征向量中心将中心性排名为输入,我们表明NCA-GE在各种情况下都表现出前者的表现。

Extracting information from real-world large networks is a key challenge nowadays. For instance, computing a node centrality may become unfeasible depending on the intended centrality due to its computational cost. One solution is to develop fast methods capable of approximating network centralities. Here, we propose an approach for efficiently approximating node centralities for large networks using Neural Networks and Graph Embedding techniques. Our proposed model, entitled Network Centrality Approximation using Graph Embedding (NCA-GE), uses the adjacency matrix of a graph and a set of features for each node (here, we use only the degree) as input and computes the approximate desired centrality rank for every node. NCA-GE has a time complexity of $O(|E|)$, $E$ being the set of edges of a graph, making it suitable for large networks. NCA-GE also trains pretty fast, requiring only a set of a thousand small synthetic scale-free graphs (ranging from 100 to 1000 nodes each), and it works well for different node centralities, network sizes, and topologies. Finally, we compare our approach to the state-of-the-art method that approximates centrality ranks using the degree and eigenvector centralities as input, where we show that the NCA-GE outperforms the former in a variety of scenarios.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源