论文标题
高温SU($ n $)量子磁铁中自旋相关的结构
Structure of Spin Correlations in High Temperature SU($N$) Quantum Magnets
论文作者
论文摘要
具有大SU($ n $)对称性的量子磁铁是发现新形式的异国量子物质的有前途的操场。在最近在光学晶格中研究SU($ n $)量子磁性的实验努力($ n $)量子磁性的动机,我们在这里研究了SU($ n $)Heisenberg Spin模型中自旋相关性的温度依赖性。我们揭示了一个很大的温度制度,从$ t = \ infty $降低到中等温度,并且对于所有$ n \ ge2 $,在这种情况下,相关性在广泛的晶格上具有共同的空间结构,其相关性的迹象是从一个曼哈顿壳到下一个相互交替的相关性,而与下一个相关的相互作用,而差异很快。我们专注于一维链,以及某些$ n $的二维正方形和三角形晶格,我们讨论了一种疾病和Lifshitz温度的外观,将相称的曼哈顿高级$ T $制度与低$ t $ bunformenserate Segime分开。我们观察到,此温度窗口与无限温度下的$ \ ln(n)$熵相关的大约$ n $独立的熵减少。我们的结果基于高温串联参数以及SU($ 3 $)和SU($ 4 $)Super晶格样本的热力学数量的大规模数值完全对角线化结果,对应于希尔伯特总空间,最高为$ 4 \ $ 4 \ times times times times times times times 10^9 $。
Quantum magnets with a large SU($N$) symmetry are a promising playground for the discovery of new forms of exotic quantum matter. Motivated by recent experimental efforts to study SU($N$) quantum magnetism in samples of ultracold fermionic alkaline-earth-like atoms in optical lattices, we study here the temperature dependence of spin correlations in the SU($N$) Heisenberg spin model in a wide range of temperatures. We uncover a sizeable regime in temperature, starting at $T=\infty$ down to intermediate temperatures and for all $N\ge2$, in which the correlations have a common spatial structure on a broad range of lattices, with the sign of the correlations alternating from one Manhattan shell to the next, while the amplitude of the correlations is rapidly decreasing with distance. Focussing on the one-dimensional chain and the two-dimensional square and triangular lattice for certain $N$, we discuss the appearance of a disorder and a Lifshitz temperature, separating the commensurate Manhattan high-$T$ regime from a low-$T$ incommensurate regime. We observe that this temperature window is associated to an approximately $N$-independent entropy reduction from the $\ln(N)$ entropy at infinite temperature. Our results are based on high-temperature series arguments and as well as large-scale numerical full diagonalization results of thermodynamic quantities for SU($3$) and SU($4$) square lattice samples, corresponding to a total Hilbert space of up to $4\times 10^9$ states.