论文标题

在UAV辅助网络中,神经组合深钢筋学习,用于年龄最佳的联合轨迹和调度设计

Neural Combinatorial Deep Reinforcement Learning for Age-optimal Joint Trajectory and Scheduling Design in UAV-assisted Networks

论文作者

Ferdowsi, Aidin, Abd-Elmagid, Mohamed A., Saad, Walid, Dhillon, Harpreet S.

论文摘要

在本文中,考虑了一个无人驾驶飞机(UAV)辅助无线网络,其中假定电池约束的无人机朝向能量受限的地面节点移动,以接收有关其观察到的过程的状态更新。无人机的飞行轨迹和状态更新的调度是共同优化的,目的是最大程度地减少无人机上不同物理过程的标准化加权信息年龄(NWAOI)值。该问题首先被提出为混合计划。然后,对于给定的调度策略,提出了基于凸优化的解决方案,以得出无人机的最佳飞行轨迹和更新的时间瞬间。但是,由于法式问题的组合性质,找到最佳的调度策略是具有挑战性的。因此,为了补充提出的基于凸优化的解决方案,使用有限的马尔可夫决策过程(MDP)来找到最佳的调度策略。由于MDP的状态空间非常大,因此建议使用深层Q-NETWORK(DQN)基于神经组合的深层增强学习(NCRL)算法来获得最佳策略。但是,对于具有许多节点的大规模场景,DQN体系结构无法有效地学习最佳的调度策略。在此激励的情况下,提出了长期的短期内存(LSTM)自动编码器,以将状态空间映射到此类大规模场景中的固定尺寸矢量表示。分析得出的最小NWAOI上的下限是针对不同节点的重要性权重选择的系统设计指南。数值结果还表明,与基线策略相比,所提出的NCRL方法可以显着改善每个过程可实现的NWAOI,例如基于权重和离散的状态DQN策略。

In this paper, an unmanned aerial vehicle (UAV)-assisted wireless network is considered in which a battery-constrained UAV is assumed to move towards energy-constrained ground nodes to receive status updates about their observed processes. The UAV's flight trajectory and scheduling of status updates are jointly optimized with the objective of minimizing the normalized weighted sum of Age of Information (NWAoI) values for different physical processes at the UAV. The problem is first formulated as a mixed-integer program. Then, for a given scheduling policy, a convex optimization-based solution is proposed to derive the UAV's optimal flight trajectory and time instants on updates. However, finding the optimal scheduling policy is challenging due to the combinatorial nature of the formulated problem. Therefore, to complement the proposed convex optimization-based solution, a finite-horizon Markov decision process (MDP) is used to find the optimal scheduling policy. Since the state space of the MDP is extremely large, a novel neural combinatorial-based deep reinforcement learning (NCRL) algorithm using deep Q-network (DQN) is proposed to obtain the optimal policy. However, for large-scale scenarios with numerous nodes, the DQN architecture cannot efficiently learn the optimal scheduling policy anymore. Motivated by this, a long short-term memory (LSTM)-based autoencoder is proposed to map the state space to a fixed-size vector representation in such large-scale scenarios. A lower bound on the minimum NWAoI is analytically derived which provides system design guidelines on the appropriate choice of importance weights for different nodes. The numerical results also demonstrate that the proposed NCRL approach can significantly improve the achievable NWAoI per process compared to the baseline policies, such as weight-based and discretized state DQN policies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源