论文标题

最佳和量化的机制设计,用于新的数据获取

Optimal and Quantized Mechanism Design for Fresh Data Acquisition

论文作者

Zhang, Meng, Arafa, Ahmed, Wei, Ermin, Berry, Randall A.

论文摘要

实时应用程序的扩散引起了人们对数据新鲜度的极大兴趣,这是由{\ IT信息年龄}(AOI)度量所捕获的。当战略数据源具有私人市场信息时,基本的经济挑战是如何激励他们获取新的数据并优化与年龄相关的绩效。在这项工作中,我们考虑了一个信息更新系统,在该系统中,目的地从多个来源获取新的数据更新,并为此付费。目的地会产生与年龄相关的成本,以AOI的总体增加功能建模。每个来源都是战略性的,并且会产生抽样成本,这是其私人信息,可能不会如实地报告给目的地。目的地根据消息来源报告的采样成本来决定更新的价格,何时获得更新的价格,以及谁应该生成它们。我们表明,与消息来源的案件如实报告相比,天真信任来源报告的基准可能导致任意不良结果。为了解决这个问题,我们设计了一种最佳的(经济)机制,用于迈尔森的开创性工作后及时获取信息。为此,我们提出的最佳机制可以最大程度地减少目的地与年龄相关的成本及其向来源支付的总和,同时确保消息来源如实地报告其私人信息,并将自愿参与该机制。但是,找到最佳机制可能会遇到\ textit {过于昂贵的计算开销},因为它涉及解决非线性无限二维优化问题。我们进一步提出了实现渐近最优性,维持其他经济特性的最佳机制的量化版本,并使最优性和计算间接费用之间的权衡可以权衡。

The proliferation of real-time applications has spurred much interest in data freshness, captured by the {\it age-of-information} (AoI) metric. When strategic data sources have private market information, a fundamental economic challenge is how to incentivize them to acquire fresh data and optimize the age-related performance. In this work, we consider an information update system in which a destination acquires, and pays for, fresh data updates from multiple sources. The destination incurs an age-related cost, modeled as a general increasing function of the AoI. Each source is strategic and incurs a sampling cost, which is its private information and may not be truthfully reported to the destination. The destination decides on the price of updates, when to get them, and who should generate them, based on the sources' reported sampling costs. We show that a benchmark that naively trusts the sources' reports can lead to an arbitrarily bad outcome compared to the case where sources truthfully report. To tackle this issue, we design an optimal (economic) mechanism for timely information acquisition following Myerson's seminal work. To this end, our proposed optimal mechanism minimizes the sum of the destination's age-related cost and its payment to the sources, while ensuring that the sources truthfully report their private information and will voluntarily participate in the mechanism. However, finding the optimal mechanisms may suffer from \textit{prohibitively expensive computational overheads} as it involves solving a nonlinear infinite-dimensional optimization problem. We further propose a quantized version of the optimal mechanism that achieves asymptotic optimality, maintains the other economic properties, and enables one to tradeoff between optimality and computational overheads.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源