论文标题

FDA3:针对基于云的IIT应用程序的对抗攻击的联邦防御

FDA3 : Federated Defense Against Adversarial Attacks for Cloud-Based IIoT Applications

论文作者

Song, Yunfei, Liu, Tian, Wei, Tongquan, Wang, Xiangfeng, Tao, Zhe, Chen, Mingsong

论文摘要

随着人工智能(AI)和物联网(IoT)技术的扩散,各种各样的对抗性攻击越来越多,越来越多地欺骗了工业物联网(IIOT)应用使用的深层神经网络(DNN)。由于培训数据有偏见或脆弱的基础模型,对对抗性攻击进行的投入的不可察觉可能会导致毁灭性后果。尽管现有的方法有望捍卫这种恶意攻击,但其中大多数只能处理有限的现有攻击类型,这使得大规模IIOT设备的部署成为巨大的挑战。为了解决这个问题,我们提出了一种名为FDA3的有效的联邦防御方法,可以汇总针对来自不同来源的对抗性例子的国防知识。受联邦学习的启发,我们提出的基于云的建筑可以共享防御能力,以应对IIOT设备之间的不同攻击。全面的实验结果表明,通过我们的方法生成的DNN不仅可以抵抗比现有攻击特定的对抗训练方法更多的恶意攻击,而且还可以防止IIT应用程序免受新攻击的应用。

Along with the proliferation of Artificial Intelligence (AI) and Internet of Things (IoT) techniques, various kinds of adversarial attacks are increasingly emerging to fool Deep Neural Networks (DNNs) used by Industrial IoT (IIoT) applications. Due to biased training data or vulnerable underlying models, imperceptible modifications on inputs made by adversarial attacks may result in devastating consequences. Although existing methods are promising in defending such malicious attacks, most of them can only deal with limited existing attack types, which makes the deployment of large-scale IIoT devices a great challenge. To address this problem, we present an effective federated defense approach named FDA3 that can aggregate defense knowledge against adversarial examples from different sources. Inspired by federated learning, our proposed cloud-based architecture enables the sharing of defense capabilities against different attacks among IIoT devices. Comprehensive experimental results show that the generated DNNs by our approach can not only resist more malicious attacks than existing attack-specific adversarial training methods, but also can prevent IIoT applications from new attacks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源