论文标题
MGSVF:多层次的慢速与快速框架,用于几次课堂学习
MgSvF: Multi-Grained Slow vs. Fast Framework for Few-Shot Class-Incremental Learning
论文作者
论文摘要
作为一个具有挑战性的问题,很少有班级学习(FSCIL)不断学习一系列任务,在缓慢忘记旧知识和快速适应新知识之间面临困境。在本文中,我们专注于这种“缓慢与快速”(SVF)的困境,以确定要以缓慢的方式或快速时尚更新的知识组件,从而平衡旧知识保存和新知识的适应。我们提出了一种多元的SVF学习策略,以应对来自两个不同晶粒的SVF困境:空间内(在同一特征空间内)和空间间(在两个不同的特征空间之间)。提出的策略设计了一种新颖的频率正规化,以提高空间内SVF的能力,同时开发了一种新的功能空间组成操作,以增强空间间的SVF学习性能。借助多元的SVF学习策略,我们的方法的表现优于最先进的方法。
As a challenging problem, few-shot class-incremental learning (FSCIL) continually learns a sequence of tasks, confronting the dilemma between slow forgetting of old knowledge and fast adaptation to new knowledge. In this paper, we concentrate on this "slow vs. fast" (SvF) dilemma to determine which knowledge components to be updated in a slow fashion or a fast fashion, and thereby balance old-knowledge preservation and new-knowledge adaptation. We propose a multi-grained SvF learning strategy to cope with the SvF dilemma from two different grains: intra-space (within the same feature space) and inter-space (between two different feature spaces). The proposed strategy designs a novel frequency-aware regularization to boost the intra-space SvF capability, and meanwhile develops a new feature space composition operation to enhance the inter-space SvF learning performance. With the multi-grained SvF learning strategy, our method outperforms the state-of-the-art approaches by a large margin.