论文标题

通过张量网络计数并行加权模型

Parallel Weighted Model Counting with Tensor Networks

论文作者

Dudek, Jeffrey M., Vardi, Moshe Y.

论文摘要

在加权模型计数减少到张量 - 网络收缩之后,一种有希望的加权模型计数的新代数方法可利用张量网络。先前的工作重点是分析这种方法的单核性能,并证明它是当前加权模型计数算法组合的有效补充。 在这项工作中,我们探讨了多核和GPU使用对加权模型计数的张量网络收缩的影响。为了利用多个核心,我们实施了一个平行的树分解求解器组合,以找到收缩张量的订单。为了利用GPU,我们使用TensorFlow执行收缩。我们比较了1914年标准加权模型计数基准的产生加权模型计数器,并表明它显着改善了虚拟的最佳求解器。

A promising new algebraic approach to weighted model counting makes use of tensor networks, following a reduction from weighted model counting to tensor-network contraction. Prior work has focused on analyzing the single-core performance of this approach, and demonstrated that it is an effective addition to the current portfolio of weighted-model-counting algorithms. In this work, we explore the impact of multi-core and GPU use on tensor-network contraction for weighted model counting. To leverage multiple cores, we implement a parallel portfolio of tree-decomposition solvers to find an order to contract tensors. To leverage a GPU, we use TensorFlow to perform the contractions. We compare the resulting weighted model counter on 1914 standard weighted model counting benchmarks and show that it significantly improves the virtual best solver.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源