论文标题

用于基于机械的学习和设计超材料系统的深层生成建模

Deep Generative Modeling for Mechanistic-based Learning and Design of Metamaterial Systems

论文作者

Wang, Liwei, Chan, Yu-Chin, Ahmed, Faez, Liu, Zhao, Zhu, Ping, Chen, Wei

论文摘要

超材料正在成为一种新的范式材料系统,可为多种工程应用提供前所未有的可调整特性。但是,由于高维拓扑设计空间,多个本地优质和高计算成本,超材料及其多尺度系统的逆设计及其多尺度系统具有挑战性。为了解决这些障碍,我们提出了一个基于深层生成建模的新型数据驱动的超材料设计框架。在大型的超材料数据库上同时训练了差异自动编码器(VAE)和用于财产预测的回归剂,以将复杂的微结构映射到低维,连续和有组织的潜在空间中。我们在这项研究中表明,VAE的潜在空间提供了一个距离度量,以测量形状相似性,可以在微观结构之间进行插值以及编码几何和性质变化的有意义的模式。基于这些见解,提出了系统的数据驱动方法,用于设计微观结构,分级家庭和多尺度系统。对于微观结构设计,通过在潜在空间中的简单向量操作可以轻松实现机械性能和微观结构的复杂操作。进一步扩展了矢量操作,以通过搜索构造的图形模型来生成具有机械性能级别的超材族家族。对于多尺度的超材料系统设计,可以使用VAE在不同位置的目标属性快速生成各种微观结构,然后通过有效的基于图的优化方法组装,以确保相邻微观结构之间的兼容性。我们通过设计实现所需失真行为的功能分级和异质的超材料系统来展示我们的框架。

Metamaterials are emerging as a new paradigmatic material system to render unprecedented and tailorable properties for a wide variety of engineering applications. However, the inverse design of metamaterial and its multiscale system is challenging due to high-dimensional topological design space, multiple local optima, and high computational cost. To address these hurdles, we propose a novel data-driven metamaterial design framework based on deep generative modeling. A variational autoencoder (VAE) and a regressor for property prediction are simultaneously trained on a large metamaterial database to map complex microstructures into a low-dimensional, continuous, and organized latent space. We show in this study that the latent space of VAE provides a distance metric to measure shape similarity, enable interpolation between microstructures and encode meaningful patterns of variation in geometries and properties. Based on these insights, systematic data-driven methods are proposed for the design of microstructure, graded family, and multiscale system. For microstructure design, the tuning of mechanical properties and complex manipulations of microstructures are easily achieved by simple vector operations in the latent space. The vector operation is further extended to generate metamaterial families with a controlled gradation of mechanical properties by searching on a constructed graph model. For multiscale metamaterial systems design, a diverse set of microstructures can be rapidly generated using VAE for target properties at different locations and then assembled by an efficient graph-based optimization method to ensure compatibility between adjacent microstructures. We demonstrate our framework by designing both functionally graded and heterogeneous metamaterial systems that achieve desired distortion behaviors.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源