论文标题
周期性收缩映射的近似固定点定理
Approximate fixed point theorems of cyclical contraction mapping on G-metric spaces
论文作者
论文摘要
本文介绍了一类新的运算符和收缩映射,用于G-intric空间和大约固定点特性上的周期性图t。此外,我们证明了关于G-intric空间周期性收缩映射的近似固定点的两个一般引理。使用这些结果,我们证明了G-inetric空间上新的一类运算符的几个近似固定点定理(不一定要完成)。可以利用这些结果来建立新的近似固定点定理用于周期性收缩图。此外,还有一类新的周期性操作员和在G--基空间上的收缩映射(不一定要完整),而不需要连续。在本文中,给出了示例以支持我们的结果的可用性。
This paper introduce a new class of operators and contraction mapping for a cyclical map T on G-metric spaces and the approximately fixed point properties. Also,we prove two general lemmas regarding approximate fixed Point of cyclical contraction mapping on G-metric spaces. Using these results we prove several approximate fixed point theorems for a new class of operators on G-metric spaces (not necessarily complete). These results can be exploited to establish new approximate fixed point theorems for cyclical contraction maps. Further,there is a new class of cyclical operators and contraction mapping on G-metric space (not necessarily complete)which do not need to be continuous.Finally,examples are given to support the usability of our results.