论文标题
跨监督对象检测
Cross-Supervised Object Detection
论文作者
论文摘要
从图像级注释(没有对象边界框)中学习了一个新对象类别后,人类在精确定位这些对象方面非常出色。但是,构建良好的对象本地化(即检测器)当前需要昂贵的实例级注释。尽管已经从弱标记的样品(仅具有类标签)学习检测器上完成了一些工作,但这些探测器在本地化时的表现不佳。在这项工作中,我们通过利用从完全标记的基础类别中学到的知识来展示如何从弱标记的新类别图像中构建更好的对象探测器。我们称这种新颖的学习范式交叉监督对象检测。我们提出了一个统一的框架,该框架结合了一个从实例级注释中训练的检测头和从图像级注释中学到的识别头,以及一个空间相关模块,该模块弥合了检测和识别之间的差距。这些贡献使我们能够在复杂的多对象场景(例如可可数据集)中更好地检测具有图像级注释的新对象。
After learning a new object category from image-level annotations (with no object bounding boxes), humans are remarkably good at precisely localizing those objects. However, building good object localizers (i.e., detectors) currently requires expensive instance-level annotations. While some work has been done on learning detectors from weakly labeled samples (with only class labels), these detectors do poorly at localization. In this work, we show how to build better object detectors from weakly labeled images of new categories by leveraging knowledge learned from fully labeled base categories. We call this novel learning paradigm cross-supervised object detection. We propose a unified framework that combines a detection head trained from instance-level annotations and a recognition head learned from image-level annotations, together with a spatial correlation module that bridges the gap between detection and recognition. These contributions enable us to better detect novel objects with image-level annotations in complex multi-object scenes such as the COCO dataset.