论文标题

具有尖峰神经网络对文本表示的生物学上合理的学习

Biologically Plausible Learning of Text Representation with Spiking Neural Networks

论文作者

Białas, Marcin, Mirończuk, Marcin Michał, Mańdziuk, Jacek

论文摘要

这项研究提出了一种新型的生物学上合理的机制,用于产生基于低维尖峰的文本表示。首先,我们演示了如何将文档转换为一系列尖峰列车,随后在尖峰神经网络(SNN)的训练过程中用作输入。该网络由生物学上合理的元素组成,并根据无监督的HEBBIAN学习规则,依赖于尖峰的可塑性(STDP)训练。训练后,SNN可用于生成适合文本/文档分类的低维尖峰文本表示。经验结果表明,生成的文本表示形式可以有效地用于文本分类中,导致20.19 \%$的准确性在20个新闻组数据集的bydate版本上,这是依赖低维文本表示的方法中的主要结果。

This study proposes a novel biologically plausible mechanism for generating low-dimensional spike-based text representation. First, we demonstrate how to transform documents into series of spikes spike trains which are subsequently used as input in the training process of a spiking neural network (SNN). The network is composed of biologically plausible elements, and trained according to the unsupervised Hebbian learning rule, Spike-Timing-Dependent Plasticity (STDP). After training, the SNN can be used to generate low-dimensional spike-based text representation suitable for text/document classification. Empirical results demonstrate that the generated text representation may be effectively used in text classification leading to an accuracy of $80.19\%$ on the bydate version of the 20 newsgroups data set, which is a leading result amongst approaches that rely on low-dimensional text representations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源