论文标题

新皮层和pulvinar的深度预测性学习

Deep Predictive Learning in Neocortex and Pulvinar

论文作者

O'Reilly, Randall C., Russin, Jacob L., Zolfaghar, Maryam, Rohrlich, John

论文摘要

人类如何从原始感官体验中学到?一生,但最明显的是,我们在没有明确指导的情况下学习。我们提出了一种详细的生物学机制,用于广泛地提出学习的观念,即学习是基于预测和实际结果之间的差异(即预测错误驱动的学习)。具体而言,丘脑的pulvinar核的许多弱投影产生自上而下的预测,以及来自较低区域的稀疏焦点驱动器输入提供了实际结果,源自第5层固有爆发(5IB)神经元。因此,结果仅被短暂激活,大约每100毫秒(即10 Hz,alpha),导致时间差异误差信号,该信号驱动整个新皮层的局部突触变化,从而导致误差背流学习的误差误差形式。我们在视觉系统的大规模模型中实现了这些机制,发现模拟的下降(IT)途径学会根据不变形状属性系统地对3D对象进行分类,仅基于从原始视觉输入中进行预测性学习。这些类别与人类在同一刺激上的判断相匹配,并且与灵长类动物中IT皮层中的神经表示一致。

How do humans learn from raw sensory experience? Throughout life, but most obviously in infancy, we learn without explicit instruction. We propose a detailed biological mechanism for the widely-embraced idea that learning is based on the differences between predictions and actual outcomes (i.e., predictive error-driven learning). Specifically, numerous weak projections into the pulvinar nucleus of the thalamus generate top-down predictions, and sparse, focal driver inputs from lower areas supply the actual outcome, originating in layer 5 intrinsic bursting (5IB) neurons. Thus, the outcome is only briefly activated, roughly every 100 msec (i.e., 10 Hz, alpha), resulting in a temporal difference error signal, which drives local synaptic changes throughout the neocortex, resulting in a biologically-plausible form of error backpropagation learning. We implemented these mechanisms in a large-scale model of the visual system, and found that the simulated inferotemporal (IT) pathway learns to systematically categorize 3D objects according to invariant shape properties, based solely on predictive learning from raw visual inputs. These categories match human judgments on the same stimuli, and are consistent with neural representations in IT cortex in primates.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源