论文标题

Montanucci和Zini定理,用于广义Artin-Mumford曲线及其在Galois点的应用

A theorem of Montanucci and Zini for generalized Artin-Mumford curves and its application to Galois points

论文作者

Fukasawa, Satoru

论文摘要

提出了Montanucci和Zini定理对广义Aritn-Schreier-Mumford Curves的自动形态群体的基本证据,而Korchmaros和Montanucci的论点则改善了Artin-Schreier-Mumford曲线。尽管在蒙塔努奇和齐尼尼的文章中假定地面的特征是奇怪的,但本文中的证明也适用于特征二的情况。作为Montanucci和Zini定理的应用,确定了通用Artin-Schreier-Mumford曲线的Galois点或Galois线的排列。

An elementary proof of a theorem of Montanucci and Zini on the automorphism group of generalized Aritn-Schreier-Mumford curves is presented, with the argument of Korchmaros and Montanucci for Artin-Schreier-Mumford curves being improved. Although the characteristic of a ground field is assumed to be odd in the article of Montanucci and Zini, the proof in the present article is applicable to the case of characteristic two also. As an application of the theorem of Montanucci and Zini, the arrangement of Galois points or Galois lines for the generalized Artin-Schreier-Mumford curve is determined.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源