论文标题
非交通性阳法理论中全息纠缠熵的通用术语
Universal terms for holographic entanglement entropy in noncommutative Yang--Mills theory
论文作者
论文摘要
在本文中,我们得出了非交互性阳性理论中全息纠缠熵的通用(与截止无关的)部分,并详细研究了其特性。全息纠缠熵与系统尺度的函数的行为在大型非交换性和微小的非交换性之间发生了巨大变化。非交通性阳米尔斯理论中的纠缠熵的强大亚加性不平等在很大的非交易中被修改。通过纠缠熵定义的熵$ c $ - 功能的行为在较大的非交通性和小型非交换性之间也发生了巨大变化。此外,在有限温度下,在非共同阳米尔斯理论中的纠缠熵也有一个过渡。
In this paper, we derive the universal (cut-off-independent) part of the holographic entanglement entropy in the noncommutative Yang-Mills theory and examine its properties in detail. The behavior of the holographic entanglement entropy as a function of a scale of the system changes drastically between large noncommutativity and small noncommutativity. The strong subadditivity inequality for the entanglement entropies in the noncommutative Yang-Mills theory is modified in large noncommutativity. The behavior of entropic $c$-function defined by means of the entanglement entropy also changes drastically between large noncommutativity and small noncommutativity. In addition, there is a transition for the entanglement entropy in the noncommutative Yang-Mills theory at finite temperature.