论文标题

加热内核界限,用于大型马尔可夫过程,并具有单一的跳跃

Heat kernel bounds for a large class of Markov process with singular jump

论文作者

Kim, Kyung-Youn, Wang, Lidan

论文摘要

令$ z =(z^{1},\ ldots,z^{d})$为$ d $ -dimensionallévy流程,其中$ z^{i} $是独立的$ 1 $ - 二级lévyvy流程,带有跳跃kernel $ j^{ϕ,1}(u,w)(u,w)(u,w) = | u-w |^{ - 1} ϕ(| u-w |)^{ - 1} $ for $ u,w \ in \ mathbb r $。这里$ ϕ $是一个增加的功能,具有较弱的缩放条件$ \ $ \下列α,\overlineα\ in(0,2)$。 令$ j(x,y)\ asymp j^ϕ(x,y)$为对称的可测量函数,其中\ begin \ begin {align*} j^ϕ(x,y):= \ begin {case} j^{st j^{st j {case},1},1}(x^i,y^i,y,y^i)所有$ j \ ne i $} \\ 0 \ qquad&\ text {如果$ x^i \ ne y^i $的y^j $多于一个索引$ i $。} \ end {cases} \ end {cases} \ end {align {align {align*}对应于跳跃内核$ j $的存在\ ldots,x^{d})$,并获得过渡密度函数的尖锐的两侧热核估计。

Let $Z=(Z^{1}, \ldots, Z^{d})$ be the $d$-dimensional Lévy processes where $Z^{i}$'s are independent $1$-dimensional Lévy processes with jump kernel $J^{ϕ, 1}(u,w) =|u-w|^{-1}ϕ(|u-w|)^{-1}$ for $u, w\in \mathbb R$. Here $ϕ$ is an increasing function with weak scaling condition of order $\underline α, \overline α\in (0, 2)$. Let $J(x,y) \asymp J^ϕ(x,y)$ be the symmetric measurable function where \begin{align*} J^ϕ(x,y):=\begin{cases} J^{ϕ, 1}(x^i, y^i)\qquad&\text{ if $x^i \ne y^i$ for some $i$ and $x^j = y^j$ for all $j \ne i$}\\ 0\qquad&\text{ if $x^i \ne y^i$ for more than one index $i$.} \end{cases} \end{align*} Corresponding to the jump kernel $J$, we show the existence of non-isotropic Markov processes $X:=(X^{1}, \ldots, X^{d})$ and obtain sharp two-sided heat kernel estimates for the transition density functions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源