论文标题
格拉曼歧管的近似三角剖分
Approximate triangulations of Grassmann manifolds
论文作者
论文摘要
我们定义了嵌入在欧几里得空间中的歧管$ m $的近似三角剖分的概念。基本思想是建立一个嵌套的简单综合体系列,其顶点位于$ m $中,并使用持久同源性在该家族中找到一个同源性与$ m $相符的综合体。我们的关键示例是各种Grassmann歧管$ G_K({\ Mathbb r}^n)$。
We define the notion of an approximate triangulation for a manifold $M$ embedded in euclidean space. The basic idea is to build a nested family of simplicial complexes whose vertices lie in $M$ and use persistent homology to find a complex in the family whose homology agrees with that of $M$. Our key examples are various Grassmann manifolds $G_k({\mathbb R}^n)$.